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Abstract. We investigate the light-scattering intensity on three-dimensional cluster–cluster
aggregations. The effect of reversible aggregation on the light-scattering intensity is clarified
in terms of numerical simulations. For the case of weak interaction between particles, there is
no peak as a function of the scattering wavenumberq in the static light-scattering intensity. We
find that the profile of the light-scattering intensity on reversible cluster–cluster aggregations is
apparently different from that for diffusion-limited cluster–cluster aggregations.

1. Introduction

The aggregation process of particles has attracted a great deal of interest in recent years, due to
its wide range of practical applications and its scientific importance [1,2]. The cluster–cluster
aggregation model (CCA) was developed by Meakin [3] and Kolb, Botet and Jullien [4]; it
describes the sol–gel transition due to a nonequilibrium process, the understanding of whose
underlying mechanism, leading to the formation of gel networks, has remained far from
complete. When the particle concentrationc is larger than a characteristic gel concentrationcg,
an aggregate spans a box from edge to edge and forms a gel network. Though several different
models have been proposed to elucidate the formation of gel networks [5], the cluster–cluster
aggregation model (CCA) is the most successful one as regards understanding the gel formation.
This model produces clusters with scale invariance such as

M(R) ∝ RDf (1)

whereM(R) is a total mass of the cluster andDf is its fractal dimension [3, 4]. There
are two types of model, namely diffusion-limited cluster–cluster aggregation (DLCA) and
reaction-limited cluster–cluster aggregation (RLCA), which correspond to fast and slow
aggregation processes, respectively. Among the typical cluster–cluster aggregations are
colloidal aggregations, and a lot of experimental work has been performed on these systems
[6–9]. Among the studies, static light-scattering measurement is powerful for clarifying the
structure of the aggregations, which gives us useful information such as the average radius
of gyration. Gonzalez and Ramirez-Santiago have performed numerical simulations on the
three-dimensional RLCA model [10, 11]. Their results have indicated that there is a peak at
nonzero scattering vectorq in the light-scattering intensity in the RLCA model, as well as in
the DLCA model.

In this paper, we study numerically the static light-scattering intensityI (q) on three-
dimensionalreversible cluster–cluster aggregation, which forms a physical gel network
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[12–14]. Provided that the effective attractive interactions between particles are relatively
weak, particles have high probability of escaping from the cluster. In contrast to the ordinary
cluster–cluster aggregation model, this aggregation process is reversible—particles are allowed
to restructure within clusters or even break apart from them. In contrast to the case for the
DLCA model, the physical properties of the reversible cluster–cluster aggregation model have
not been clarified so far. In a previous study, we have numerically investigated the sol–gel
transition using the reversible cluster–cluster aggregation model [14]. We calculate the time
development of the light-scattering intensityI (q) in the reversible cluster–cluster aggregation
model, to clarify the effect of reversibility on the cluster formation [12–14]. In addition,
the light-scattering properties of the irreversible cluster–cluster aggregations with different
sticking probabilities between particles are given for comparison; this corresponds to the
regime intermediate between the DLCA and RLCA. These results indicate a clear difference
betweenI (q) for reversible cluster–cluster aggregations and that for irreversible ones.

This paper is organized as follows. In section 2, we describe the detail of the cluster–
cluster aggregation model. In section 3, the numerical results on the static light-scattering
intensity on three-dimensional cluster–cluster aggregations are displayed. Section 4 is devoted
to discussion and conclusions.

2. Models

We describe the formation rule for the cluster–cluster aggregation [15, 16]. We take the unit
a = 1 for the lattice constant. In this model,N particles are randomly disposed in a cubic box
of sizeL, where the particle concentrationc becomes

c ≡ N/L3. (2)

Theith particle (or cluster) is chosen at random according to the probabilityP(ni, α) defined
by

P(ni, α) ≡ nαi
/∑

i

nαi (3)

whereni is the number of particles in theith cluster andα is a numerical parameter. In
most studies, the value ofα is taken asα = −1/Df , which is analogous to the diffusion
constant of each cluster being inversely proportional to the gyration radiusRg [17, 18]. The
ith cluster is moved by one step along a randomly chosen direction among six directions
(±1, 0, 0), (0,±1, 0), (0, 0,±1) in a cubic box. If the cluster does not collide with another
one, the displacement is performed and the algorithm goes on by choosing another cluster. If
a collision occurs between two clusters, they stick together forming a new large cluster with a
sticking probabilityp, and another cluster is chosen again at random.

Reversible cluster–cluster aggregations are described by modifying the diffusion-limited
cluster–cluster aggregations with a finite interparticle attraction energy. The energy of inter-
actionεmn between particlesm andn is defined to beεmn = −ε (ε > 0) if particlesm andn
are nearest neighbours; otherwiseεmn = 0. A particle is allowed to rearrange its position by
one lattice unit within the same cluster or break away from it, according to the probabilitypb:

pb =
{

1 for1E < 0

exp(−1E/kBT ) for 1E > 0
(4)

wherekB , T and1E are the Boltzmann constant, the temperature of the system and the
energy difference due to the unbinding of a particle, respectively. After sufficiently long
time steps, the system reaches an equilibrium state. At finite temperature, the structure of
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the aggregations does not become compact [12–14]. The properties of reversible cluster–
cluster aggregations change on varying the ratioτR/τD, where 1/τD and 1/τR are the attempt
frequency for diffusive motion of a cluster and that for particle rearrangement due to thermal
fluctuations, respectively. WhenτR/τD � 1, the system is governed by the diffusive motion
of clusters, which corresponds to irreversible aggregations. WhenτR/τD � 1, the properties
of the system are solely determined by statistical equilibrium conditions. In such a case, the
system becomes a sticky hard-sphere system; these have been extensively studied.

3. Numerical results

We have formed large-scale cluster–cluster aggregations by means of computer simulations.
Periodic boundary conditions are employed in all spatial directions. In the following, we
consider the case whereτR/τD = 1, when the attempts at cluster diffusion and particle
rearrangement are performed with the same frequency. This means that the effects of the
diffusive motion of clusters (particles) and thermal fluctuations are both important in this
system. Figure 1 shows a snapshot ofd = 3 reversible cluster–cluster aggregations formed on
a simple-cubic lattice, after sufficiently long time steps. In figure 1, the system size and the
particle concentration are taken asL = 40 andc = 0.05, respectively, and the temperature is
chosen to bekBT = 0.1ε. We can see that the maximum cluster spans from end to end in a box
and forms a gel network. In these systems, there is a sol–gel transition as a function of particle
concentrationc and the temperatureT , and the transition temperature decreases as the particle
concentration becomes small [14]. The fractal dimension of these aggregations is known to
beDf = 2.4± 0.1 [14]. For systems formed by monodisperse particles, the light-scattering
intensityI (q) is given by

I (q) = P(q)S(q) (5)

whereP(q) is a form factor for spherical particles of unit diameter(a = 1) such as

P(q) =
{

24
sin(q/2)− (q/2) cos(q/2)

q3

}2

(6)

andS(q) is the structure factor which is related to the density–density correlation function by
means of the Fourier transform [15,19]. In the actual calculations, the structure factorS(q) is

Figure 1. Three-dimensional reversible cluster–
cluster aggregation on a simple-cubic lattice. The
system size and the particle concentration are
taken asL = 40 andc = 0.05, respectively.
The temperature of the system is chosen to be
kBT /ε = 0.1.
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given by [20]

S(q) ≡ 1

N

∑
m,n

exp{iq · (rm − rn)} = 1

N

∣∣∣∣∣ N∑
m=1

exp(iq · rm)

∣∣∣∣∣
2

(7)

whererm andq are the positional vector of themth particle and the scattering vector(q ≡ |q|),
respectively.

Figure 2 shows the time development of the static light-scattering intensityI (q) on
three-dimensional reversible cluster–cluster aggregation. The system sizeL, the particle
concentrationc and the temperature of the system are taken asL = 80, c = 0.05 and
kBT /ε = 1.0, respectively, There is a gelling network spanning the whole system with these
parameters [14]. The number of time stepsnt is chosen asnt = 1.2×105, 2.4×105, 3.6×105,
4.8× 105, 6.0× 105, 7.2× 105 and 9.6× 105. These results indicate that the peak intensity
becomes larger and the peak position of the scattering intensityq = qmax shifts to lowerq
as the gelation proceeds. After long time steps(nt > 6.0× 105), the peak ofI (q) vanishes.
To our knowledge, this is the first study of the light-scattering intensityI (q) on reversible
cluster–cluster aggregations in computer simulations.

Figure 2. The static light-scattering intensityI (q) of d = 3 reversible cluster–cluster aggregations.
The system sizeL and the particle concentrationc are taken asL = 80 andc = 0.05, respectively.
The temperature of the system is chosen askBT /ε = 1.0. The number of time stepsnt is chosen
asnt = 1.2× 105, 2.4× 105, 3.6× 105, 4.8× 105, 6.0× 105, 7.2× 105 and 9.6× 105.

We also show the profile of the light-scattering intensityI (q)of irreversible cluster–cluster
aggregations for comparison. There are two limiting regimes of the aggregation processes.
One is a rapid regime called diffusion-limited cluster–cluster aggregation characterized by
Df ≈ 1.78 in a three-dimensional system(d = 3), for which the colliding particles stick at
first contact [15,21]. The other is a much slower regime, called reaction-limited cluster–cluster
aggregation, due to a very small sticking probability caused by potential barriers between
particles, leading to more compact clusters with, e.g.,Df ≈ 2.1 for d = 3. The sticking
probabilityp is chosen asp = 1 for the DLCA model [15] andp � 1 for the RLCA model [22].
In the irreversible aggregation, a single aggregate is formed after long time steps. Figure 3(a)
shows the profilesI (q) for d = 3 cluster–cluster aggregations with conditions intermediate
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(a)

(b)

Figure 3. (a) The static light-scattering intensityI (q) for d = 3 irreversible cluster–cluster
aggregations. The system sizeL and the particle concentrationc are taken asL = 80 andc = 0.05,
respectively. Filled squares, filled circles, filled triangles, open squares and open circles correspond
to the results for sticking probabilitiesp = 0.02, 0.05, 0.10, 0.20 and 1.0, respectively. The inset
shows a logarithmic plot ofI (q) with p = 0.02. (b) The static light-scattering intensityI (q) of
d = 3 cluster–cluster aggregations. The particle concentrationc is taken asc = 0.10. The inset
shows a logarithmic plot ofI (q) with p = 0.02.

between those of the DLCA and RLCA models. The system size and the particle concentration
of the aggregations in figure 3(a) are taken to beL = 80 andc = 0.05, respectively, and the
ensemble average is taken over 120 samples. In figure 3(a), the results for sticking probabilities
p = 0.02, 0.05, 0.10, 0.20 and 1.00 (DLCA) are shown, which corresponds to changing the
potential barriers between particles in colloidal aggregations. Figure 3(b) shows the profiles
I (q) for d = 3 cluster–cluster aggregations with the particle concentrationc = 0.10. In
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figures 3(a) and 3(b), the existence of the peak at nonzero scattering vectorq = qmax reflects
the density fluctuations in the aggregation [10, 17]. With larger concentrationc (figure 3(b)),
the correlation lengthξ of the system becomes smaller and the peak positionq = qmax shifts
to a higher-q regime, because the peak positionq = qmax is inversely proportional to the
correlation length of the aggregationsξ [15]. We observe that the peak positionq = qmax

shifts to lowerq as the sticking probabilityp decreases. This suggests that the correlation
lengthξ ≈ 2π/qmax becomes larger with decreasing sticking probabilityp. With p = 0.02, it
is also confirmed thatI (q) obeys a power-law behaviour such as

I (q) ∝ q−Df (Df = 2.10± 0.03) (8)

within the regime 2πξ−1 < q < 2πa−1 (see the insets of figures 3(a) and 3(b)).
Figure 4 shows the dependence on the sticking probabilityp of the peak intensity

I (q = qmax), with the particle concentrationsc = 0.05 and 0.10. Figure 4 shows that
the peak intensity increases with decreasing sticking probabilityp, which reflects the fact that
the structure of the aggregation becomes more compact. These results show that there is a
definite peak in the scattering intensityI (q) in three-dimensional irreversible cluster–cluster
aggregations, in agreement with previous studies [10, 11]. We confirm that the profiles of
the light-scattering intensityI (q) on the reversible cluster–cluster aggregations are apparently
different from those for the irreversible ones such as the DLCA and RLCA [10,11].

Figure 4. The dependence on the sticking probabilityp of the peak intensityI (q = qmax). Solid
squares and open squares display the results forc = 0.05 and 0.10, respectively.

4. Conclusions

We have performed computer simulations on three-dimensional reversible cluster–cluster
aggregation. The profile ofI (q) for d = 3 reversible cluster–cluster aggregations has been
studied numerically. After sufficiently long time steps, the scattering intensityI (q) has no
peak for reversible cluster–cluster aggregations in the observedq-regime. We also study
the irreversible cluster–cluster aggregations [23, 24] for comparison, with different particle
concentrationsc and sticking probabilitiesp. It is found that there is a definite peak in theq-
dependence of the scattering intensityI (q) for d = 3 irreversible cluster–cluster aggregations,
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in agreement with previous studies [10,11]. We have shown that the peak intensity increases
with decreasing sticking probabilityp, which reflects the fact that the structure of the clusters
becomes more compact. These results clarify the light-scattering properties on reversible
cluster–cluster aggregations, and that the profile of the light-scattering intensityI (q) is
different from that for the irreversible ones such as the DLCA and RLCA [10,11]. There are
several phenomenological formulae for the structure factorS(q), based on the single-aggregate
theory [15]. An example is the Fisher–Burford formula [17,25]:

S(q) = S(0)
{

1 +
2

3Df

R2
gq

2

}−Df /2
(9)

in which there is no peak in theq-dependence. This suggests that the intercluster correlation
is destroyed on reversible cluster–cluster aggregations (figure 2) due to thermal fluctuations.

For low salt concentrations, Coulomb repulsion between charged colloidal particles
becomes relevant (no screening effect). This makes the effective attractive interactions between
colloidal particles weak, where the interaction energy between colloidal particles becomes
small (∼kBT ). As a result, the effect of reversibility between neighbouring particles is not
negligible. Most of the previous experiments with colloidal systems have been performed
on the irreversible cluster–cluster aggregations, and those on the reversible cluster–cluster
aggregations are fairly few [2, 6]. Detailed experimental studies are expected to confirm the
relationship between the reversible aggregation processes and the experimental results on
colloidal aggregations. To summarize, we have demonstrated that the analysis of the static
light-scattering intensity is a powerful tool for studying the mechanism of the aggregation
phenomena. This work will shed light on the interpretation of light-scattering experiments for
dense colloidal aggregations.
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